Applied Sciences, Free Full-Text

By A Mystery Man Writer
Last updated 21 Sept 2024
Applied Sciences, Free Full-Text
Musculoskeletal disorders caused by poor work posture are a serious concern in the industry since they lead to absenteeism and medical leave from work. In the context of human–robot collaboration, this issue can be mitigated if collaborative robots support human workers to perform their tasks more ergonomically. In this work, we propose a method to optimize human posture during human–robot collaboration using the Particle Swarm Optimization (PSO) algorithm. Our approach involves assigning an appropriate location to the robot’s end-effector to minimize the distance between the optimized posture of the human and their current posture in the working space. To measure human posture, we use the Rapid Entire Body Assessment score (REBA) calculated from body joint angles captured by a Kinect camera. To validate the effectiveness of our proposed method, we conducted a user study with 20 participants in a virtual reality environment. The PSO algorithm could position the robot end-effector to the optimal position close to real time. Our results showed that our method could improve ergonomics by 66%, indicating its potential for use in human–robot collaborative applications.
Applied Science & Technology Full Text
Applied Sciences An Open Access Journal from MDPI
Applied Sciences, Free Full-Text, press fit
Academic applied science-technology-full-text
Applied Sciences, Free Full-Text, press f to respect significado
New WoS July 22 Release Notes - Web of Science Group
S. Chand's Applied Science Polytechnic II Sem.: Dilip Gaikkwad: 9788121934664: : Books
Introduction to libre « fulltext » technology
Applied Sciences, Free Full-Text, script king legacy mobile sem key
Home Discover Applied Sciences

© 2014-2024 thehygienecleaningcompany.com.au. Inc. or its affiliates.